Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(6): 155, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652318

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, catalase-positive, denitrifying bacterium, designated strain Y-1T, was isolated from an aeration tank of a sewage treatment plant in China and characterized using polyphasic taxonomic approaches. Strain Y-1T could grow at 10-37 °C (optimum 25 °C), at pH 5.0-10.0 (optimum 7.0) and in the presence of 0-3.0% (w/v) NaCl (optimum 0.5%). The phylogenetic tree based on the 16S rRNA gene sequences revealed that strain Y-1T was a member of genus Diaphorobacter, and showed the highest sequence similarities with Diaphorobacter oryzae RF3T (97.50%), Diaphorobacter nitroreducens NA10BT (97.38%) and Diaphorobacter aerolatus 8604S-37T (96.56%). In terms of carbon source utilization and enzyme activities, strain Y-1T was significantly different from its similar strains. The major respiratory quinone was Q-8, and the main polar lipid was phosphatidylethanolamine. Comparative genomic analysis of strain Y-1T and other Diaphorobacter species was conducted to explore the mechanisms underlying the differences among these strains. Strain Y-1T encoded 3957 genes, consisting of 3813 protein-coding genes and 144 RNA coding genes, and encoded 652 enzymes with 31 unique enzymes compared with other related species. The DNA G + C content was 69.95 mol%. Strain Y-1T exhibited 41.71% DNA-DNA relatedness and 95% ANIb with the most related type strains.On the basis of the evidence presented from polyphasic analysis, strain Y-1T was suggested as a novel species within the genus Diaphorobacter, for which the name Diaphorobacter limosus sp. nov. is proposed, with the type strain Y-1T (= KCTC 92852T = CCTCC AB 2023032T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , China , Genoma Bacteriano , Ácidos Graxos/química , Comamonadaceae/genética , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Análise de Sequência de DNA , Hibridização de Ácido Nucleico
2.
Artigo em Inglês | MEDLINE | ID: mdl-36748604

RESUMO

A bacterial strain designated SC2-9T was isolated from the dust collector of a pigpen located in Wanju-gun, Jeollabuk-do, Republic of Korea. Cells were strictly aerobic, Gram-stain-negative, flagellated and rod-shaped. The strain was catalase- and oxidase-positive, and grew optimally 28-30 °C, pH 8.0 and 0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences showed 99.1 and 98.3 % similarities to Melaminivora jejuensis KBB12T and Melaminivora alkalimesophila CY1T, and revealing less than 97 % similarity to other validly named species. The genomic DNA G+C content of strain SC2-9T was 68.2 %. The orthologous average nucleotide identity and dDDH values of strain SC2-9T with the closest species Melaminivora jejuensis KCTC 32230T were 85.6 and 29.3 %, respectively. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminolipids and one unidentified lipid. The major fatty acids (>10 %) were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), C16 : 0 and summed feature 8 (C18 : 1 ω6c and/ or C18 : 1 ω7c). The predominant isoprenoid quinone was ubiquinone-8. Based on phenotypic, chemotaxonomic and phylogenetic data, strain SC2-9T should be assigned as a novel species of the genus Melaminivora, for which the name Melaminivora suipulveris sp. nov. is proposed. The type strain is SC2-9T (=KACC 19310T=NBRC 113103T).


Assuntos
Comamonadaceae , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Poeira , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Suínos , Animais
3.
Artigo em Inglês | MEDLINE | ID: mdl-35171091

RESUMO

CDC group non-oxidizer (NO)-1 is the provisional name designated in 1993 for phenotypically similar, Gram-stain-negative bacilli recovered primarily from human wound infections after animal bites. Otherwise, this group has been rarely alluded to in recent literature. CDC NO-1 strains had been described as non-motile, asaccharolytic, oxidase-negative, catalase-positive, nitrate-reducing bacilli, with predominate cellular fatty acids of C10 : 0 3OH, C16 : 1 ω7c, C16 : 0 and C18 : 1 ω7c. Only one 16S rRNA gene sequence deposited in NCBI (accession no. DQ054782) had been identified as CDC group NO-1 prior to this study. That sequence was closely related (>99 % identity) to sequences called 'Xenophilus species' from canine (JN713339) and feline (KM461961) oral microbiomes as well as to sequences derived from human strains (this study). Some of the 11 isolates delineated here were recovered from human wound infections subsequent to cat/dog bites; others were from wounds (links to animal bites not described) and two were recovered from dialysates. After 16S rRNA and whole genome sequencing, the isolates were found to be most closely related to each other but fell into two distinct genera assignable to the family Comamonadaceae, provisionally discussed here as CDC group NO-1 and CDC group NO-1-like. The genomes of CDC group NO-1 isolates ranged from 3.08 to 3.38 MB with G+C contents of 65.08-66.92 %; genomes derived from CDC group NO-1-like strains were smaller, ranging from 2.72 to 2.82 Mb with G+C contents of 62.87-63.0 mol%. Based on a polyphasic study of these bacteria, we describe Vandammella animalimorsus gen. nov., sp. nov. and Franklinella schreckenbergeri gen. nov., sp. nov. for these clusters.


Assuntos
Mordeduras e Picadas , Comamonadaceae , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Mordeduras e Picadas/microbiologia , Gatos , Centers for Disease Control and Prevention, U.S. , Comamonadaceae/classificação , DNA Bacteriano/genética , Cães , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estados Unidos
4.
Artigo em Inglês | MEDLINE | ID: mdl-35138242

RESUMO

The genus Azohydromonas encompasses five validly described species belonging to the betaproteobacterial class. Recognized for their potential biotechnological uses, they were first described as belonging to the genus Alcaligenes. The phylogeny of the 16S rRNA gene of the original strains as well as newly described species led to a description of these strains within a new bacterial genus, Azohydromonas. However, the phylogenetic position of this genus remains described as part of the family Alcaligenaceae, even those some authors have placed it within the order Burkholderiales. To unravel the precise position of the genus Azohydromonas, a wide phylogenomic analysis was performed. The results of 16S rRNA gene phylogeny, as well as those obtained by the multilocus analysis of homologous proteins and overall genome relatedness indices, support the reclassification of Azohydromonas in the Rubrivivax-Ideonella lineage of the family Comamonadaceae, so the transfer of this genus is proposed.


Assuntos
Alcaligenaceae , Comamonadaceae , Filogenia , Alcaligenaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/classificação , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34889729

RESUMO

Beta-proteobacteria belonging to the genus Acidovorax have been described from various environments. Many strains can interact with a range of hosts, including humans and plants, forming neutral, beneficial or detrimental associations. In the frame of this study, we investigated the genomic properties of 52 bacterial strains of the genus Acidovorax, isolated from healthy roots of Lotus japonicus, with the intent of identifying traits important for effective plant-growth promotion. Based on single-strain inoculation bioassays with L. japonicus, performed in a gnotobiotic system, we distinguished seven robust plant-growth promoting strains from strains with no significant effects on plant-growth. We showed that the genomes of the two groups differed prominently in protein families linked to sensing and transport of organic acids, production of phytohormones, as well as resistance and production of compounds with antimicrobial properties. In a second step, we compared the genomes of the tested isolates with those of plant pathogens and free-living strains of the genus Acidovorax sourced from public repositories. Our pan-genomics comparison revealed features correlated with commensal and pathogenic lifestyle. We showed that commensals and pathogens differ mostly in their ability to use plant-derived lipids and in the type of secretion-systems being present. Most free-living Acidovorax strains did not harbour any secretion-systems. Overall, our data indicate that Acidovorax strains undergo extensive adaptations to their particular lifestyle by horizontal uptake of novel genetic information and loss of unnecessary genes.


Assuntos
Proteínas de Bactérias/genética , Comamonadaceae/classificação , Lotus/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Comamonadaceae/genética , Comamonadaceae/isolamento & purificação , Genoma Bacteriano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Lotus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Simbiose
6.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34878373

RESUMO

A novel bacterium, designated BD-1T, was isolated from a sludge sample. Cells of the novel Gram-stain-negative strain were identified to be facultative anaerobic, non-motile and short rod-shaped. Growth occurred at 15-37 °C (optimum, 30 °C), pH 5.0-10.0 (pH 7.0) and in 0-4.0  % NaCl (2.0 %, w/v). The 16S rRNA gene sequence of strain BD-1T showed the highest sequence similarity to Ottowia thiooxydans DSM 14619T (97.0 %), followed by Ottowia pentelensis DSM 21699T (96.3 %) and less than 96 % to other related strains. The phylogenetic trees revealed that strain BD-1T clustered within the genus Ottowia. Summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c, 48.2 %), C16 : 0 (23.2 %) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c, 8.6 %) were the major fatty acids (>5 %), and ubiquinone-8 was the respiratory quinone. Phosphatidylethanolamine, phosphatidylmethylethanolamine and phosphatidylglycerol were identified as the major polar lipids. Meanwhile, the G+C content of the DNA was 63.6 mol% based on the draft genome analysis. The average nucleotide identity and digital DNA-DNA hybridization values between strain BD-1T and DSM 14619T were 74.5 and 21.4  %, respectively. In addition, the novel strain completely degraded 500 mg l-1 phenylacetic acid within 72 h under the condition of 3 % NaCl. Given the results of genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain BD-1T was considered to represent a novel species of the genus Ottowia, for which the name Ottowia caeni sp. nov. is proposed. The strain is a potential resource for the bioremediation of phenylacetic acid contaminated water. The type strain is BD-1T (=CGMCC 1.18541T=KCTC 82183T).


Assuntos
Comamonadaceae/classificação , Fenilacetatos/metabolismo , Filogenia , Esgotos , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esgotos/microbiologia
7.
Microbiol Spectr ; 9(1): e0016121, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431720

RESUMO

Fe(II)-oxidizing microorganisms and Fe(III)-reducing microorganisms, which drive the biogeochemical Fe cycle on the Earth's surface, are phylogenetically and ecologically diverse. However, no single organism capable of aerobic Fe(II) oxidation and anaerobic Fe(III) reduction at circumneutral pH have been reported so far. Here, we report a novel neutrophilic Fe(II)-oxidizing Rhodoferax bacterium, strain MIZ03, isolated from an iron-rich wetland in Japan. Our cultivation experiments demonstrate that MIZ03 represents a much more versatile metabolism for energy acquisition than previously recognized in the genus Rhodoferax. MIZ03 can grow chemolithoautotrophically at circumneutral pH by oxidation of Fe(II), H2, or thiosulfate as the sole electron donor under (micro)aerobic conditions (i.e., using O2 as the sole electron acceptor). In addition, it can reduce Fe(III) or nitrate under anaerobic conditions. Thus, this is the first report demonstrating the presence of a single bacterium capable of both Fe(II) oxidation and Fe(III) reduction at circumneutral pH. The observed physiology was consistent with its 4.9-Mbp complete genome encoding key genes for iron oxidation/reduction (foxEY and mtrABC), for nitrate reduction (narGHI), for thiosulfate oxidation (soxABCDXYZ), and for carbon fixation via the Calvin cycle. Our metagenomic survey suggests that there are more Rhodoferax members capable of Fe(II) oxidation and Fe(III) reduction. Such bifunctional Rhodoferax may have an ecological advantage in suboxic/anoxic environments at circumneutral pH by recycling of Fe as the electron donor and acceptor. IMPORTANCE The biogeochemical cycle of iron (Fe) via reactions of oxidation, reduction, precipitation, and dissolution is involved in the cycle of other ecologically relevant elements, such as C, N, P, S, As, Co, Ni, and Pb. The Fe cycle on the Earth's surface is driven by a variety of Fe(II)-oxidizing microorganisms and Fe(III)-reducing microorganisms. Here, we discovered a novel bacterium, Rhodoferax sp. strain MIZ03, capable of both Fe(II) oxidation and Fe(III) reduction at circumneutral pH, and we report its physiological characteristics and complete genome sequence. The unexpected capability of this bacterium provides novel insights into the Fe cycle in the environment. Moreover, this bacterium will help to better understand the molecular mechanisms of microbial Fe redox cycling as a model organism.


Assuntos
Comamonadaceae/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Aerobiose , Crescimento Quimioautotrófico , Comamonadaceae/classificação , Comamonadaceae/genética , Comamonadaceae/isolamento & purificação , Compostos Férricos/química , Compostos Ferrosos/química , Genoma Bacteriano , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Japão , Oxirredução , Filogenia , Áreas Alagadas
8.
Artigo em Inglês | MEDLINE | ID: mdl-34402776

RESUMO

In the present study, in an attempt to explore the diversity of bacteria in the roots of rice plants, a Gram-stain-negative, motile, facultatively anaerobic, non-pigmented, catalase-positive, oxidase-negative and rod-shaped bacterium with polar flagella was isolated. Phylogenetic analysis based on 16S rRNA gene sequences revealed highest sequence similarity to Limnohabitans parvus KCTC 42859T (98.2%) followed by Limnohabitans curvus KCTC 42562T (98%), Limnohabitans planktonicicus II-D5T (97.9%) and Limnohabitans australis MWH-BRAZ-DAM2DT (97.4%). Growth of strain JUR4T occurred at 10-37 °C (optimum, 30 °C), at pH 5.5-8.0 (optimum, 6.5-7) and in the presence of 0-0.2% NaCl (optimum, 0%, w/v). The genome size of strain JUR4T was found to be 3.34 Mb containing 3139 predicted protein-coding genes with a DNA G+C content of 61.5 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between the genome sequence of strain JUR4T and closely related reference strains were 21.0-24.8% and 74.7-81.4%, respectively. Strain JUR4T contained diphosphatidylglycerol, phoshatidylethanolamine, one unidentified phosphoglycolipid, one unidentified aminophosphoglycolipid, one unidentified phospholipid and seven unidentified glycolipids. The major fatty acids were C16:0 and summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c), and ubiquinone Q-8 was the sole isoprenoid quinone. So far, all species belonging to the genus Limnohabitans have been described as non-motile and devoid of flagella. All species were isolated from freshwater and are therefore denoted as planktonic bacteria. This present study introduces a novel motile member of Limnohabitans isolated from the root of rice plant, and introduces the genes associated with motility and methyl-accepting chemotaxis proteins. Phylogenetic, phenotypic, chemotaxonomic and genotypic data clearly indicates that strain JUR4T represents a novel species of the genus Limnohabitans for which the name Limnohabitans radicicola sp. nov. is proposed. The type strain is JUR4T (=KACC 21745T=NBRC 114484T).


Assuntos
Comamonadaceae/classificação , Oryza , Filogenia , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-34379584

RESUMO

Three highly alkaliphilic bacterial strains designated as A1T, H1T and B1T were isolated from two highly alkaline springs at The Cedars, a terrestrial serpentinizing site. Cells from all strains were motile, Gram-negative and rod-shaped. Strains A1T, H1T and B1T were mesophilic (optimum, 30 °C), highly alkaliphilic (optimum, pH 11) and facultatively autotrophic. Major cellular fatty acids were saturated and monounsaturated hexadecenoic and octadecanoic acids. The genome size of strains A1T, H1T and B1T was 2 574 013, 2 475 906 and 2 623 236 bp, and the G+C content was 66.0, 66.2 and 66.1 mol%, respectively. Analysis of the 16S rRNA genes showed the highest similarity to the genera Malikia (95.1-96.4 %), Macromonas (93.0-93.6 %) and Hydrogenophaga (93.0-96.6 %) in the family Comamonadaceae. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on core gene sequences revealed that the isolated strains diverged from the related species, forming a distinct branch. Average amino acid identity values of strains A1T, H1T and B1T against the genomes of related members in this family were below 67 %, which is below the suggested threshold for genera boundaries. Average nucleotide identity by blast values and digital DNA-DNA hybridization among the three strains were below 92.0 and 46.6 % respectively, which are below the suggested thresholds for species boundaries. Based on phylogenetic, genomic and phenotypic characterization, we propose Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov. (type strain A1T=NBRC 111848T=DSM 103917T), Serpentinimonas barnesii sp. nov. (type strain H1T= NBRC 111849T=DSM 103920T) and Serpentinimonas maccroryi sp. nov. (type strain B1T=NBRC 111850T=DSM 103919T) belonging to the family Comamonadaceae. We have designated Serpentinimonas raichei the type species for the genus because it is the dominant species in The Cedars springs.


Assuntos
Comamonadaceae , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
J Microbiol Biotechnol ; 31(9): 1210-1217, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319259

RESUMO

Two gram-negative, catalase-positive, strictly aerobic, and white colony-forming bacteria, strains H242T and B156T, were isolated from soil in South Korea. Cells of strain H242T were oxidase-positive and non-motile short rods, while those of strain B156T were oxidase-negative and long non-motile rods. Ubiquinone-8 was identified as the sole isoprenoid quinone in both strains. C16:0, cyclo-C17:0, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were identified in both strains as the major cellular fatty acids and polar lipids, respectively. The DNA G+C contents of strains H242T and B156T were 69.4 mol% and 69.3 mol%, respectively. Phylogenetic analyses based on 16S rRNA and 92 concatenated core gene sequences revealed that strains H242T and B156T formed distinct phylogenic lineages from other Ramlibacter type strains. The DNA-DNA hybridization (DDH) value between strains H242T and B156T was 24.6%. Strains H242T and B156T were most closely related to Ramlibacter ginsenosidimutans BXN5-27T and Ramlibacter monticola G-3-2T with 98.4% and 98.6% 16S rRNA gene sequence similarities, respectively. Digital DDH values between strain H242T and R. ginsenosidimutans and between strain B156T and R. monticola were 23.5% and 26.1%, respectively. Phenotypic, chemotaxonomic, and molecular analyses indicated that strains H242T and B156T represent two novel species of the genus Ramlibacter, for which the names Ramlibacter terrae sp. nov. and Ramlibacter montanisoli sp. nov., respectively, are proposed. The type strains of R. terrae and R. montanisoli are H242T (=KACC 21667 T =JCM 33922T) and B156T (=KACC 21665 T =JCM 33920T), respectively.


Assuntos
Comamonadaceae/classificação , Comamonadaceae/fisiologia , Microbiologia do Solo , Composição de Bases , Comamonadaceae/química , Comamonadaceae/citologia , DNA Bacteriano/genética , Ácidos Graxos , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Especificidade da Espécie , Ubiquinona
11.
Mol Biol Rep ; 48(4): 3885-3888, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33900514

RESUMO

Brown stripe, incited by Acidovorax oryzae is one of the most important and widespread diseases in rice (Oryza sativa) nurseries in Iran. Rice seedlings showing brown stripes were collected from suburb areas in southern Sari. Bacteria were isolated on plates of sorbitol neutral red agar. Species-specific PCR using trpB1/trpB2 and SEQID1/SEQID2 primer pairs resulted in amplification of the expected 478 bp and 514 bp long fragments, respectively. The 32 isolates subjected to REP-PCR analysis displayed 15 different banding profiles, with just one being shared by 10 isolates and 10 profiles were solitary and not shared by any isolates. Nonetheless, the isolates could not be different phenotypically. They appeared to be biochemically and nutritionally rather homogeneous while the genetic diversity as depicted in REP-PCR analysis was remarkable among the strains isolated from the closely located and even neighboring rice seedbeds. The implication of the findings in breeding programs is briefly discussed.


Assuntos
Comamonadaceae/genética , Polimorfismo Genético , Proteínas de Bactérias/genética , Comamonadaceae/classificação , Filogenia
12.
Arch Microbiol ; 203(5): 2373-2378, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661313

RESUMO

A white-coloured, aerobic, and rod-shaped bacterium, designated strain ID0723T was isolated from evaporator core of automobile air conditioning system. The strain was Gram-stain-negative, catalase positive, oxidase negative, and grew at pH 5.5-9.5, at temperature 18-37 °C, and at 0-2.0% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence data revealed that the strain ID0723T was affiliated to the genus Schlegelella, with the closest phylogenetic member being Schlegelella brevitalea DSM 7029 T (98.1% sequence similarity). The chemotaxonomic features of strain ID0723T were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine as the main polar lipids; Q-8 as an only ubiquinone; and summed feature 3 (C16:1ω7c and/or C16: 1ω6c), C16:0, and summed feature 8 (C18:1ω7c/or C18:1ω6c) as the major fatty acids. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization values between strain ID0723T and S. brevitalea DSM 7029 T were 74.8% and 20.0%, respectively, which were below the cut-off values of 95% and 70%, respectively. The DNA G + C content was 69.9 mol%. The polyphasic taxonomic data clearly indicated that strain ID0723T represents a novel species in the genus Schlegelella for which the name Schlegelella koreensis sp. nov. is proposed, with the type strain ID0723T (= KCTC 72731 T = NBRC 114611 T).


Assuntos
Ar Condicionado , Microbiologia do Ar , Automóveis , Comamonadaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
13.
Arch Microbiol ; 203(3): 1123-1129, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33174135

RESUMO

A non-motile, Gram-stain-negative, rod-shaped bacterium, designated strain S4T, was obtained from soil sampled at Wonju, Gyeonggi-do, Republic of Korea. Cells were white-coloured, aerobic, grew optimally at 25-32 °C on R2A agar plate. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain S4T formed a lineage within the family Comamonadaceae. The closest members were Caenimonas terrae SGM1-15T (98.1% sequence similarity), Caenimonas koreensis EMB320T (97.5%) and Ramlibacter solisilvae 5-10T (97.8%). The sequence similarities of strain S4T with other members of the family Comamonadaceae were ≤ 97.5%. The sole respiratory quinone was ubiquinone-8 (Q-8) and the principal polar lipid was phosphatidylethanolamine. The predominant cellular fatty acids were summed feature 3 (iso-C15 :0 2-OH/C16 :1 ω7c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G + C content was 65.1 mol%. In addition, the average nucleotide identity (ANIu) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain S4T and Caenimonas koreensis were 77.6 and 21%, respectively. Based on genomic, chemotaxonomic, phenotypic, and phylogenetic analyses, strain S4T represents a novel species in the genus Caenimonas, for which the name Caenimonas soli sp. nov. is proposed. The type strain is S4T (= KCTC 72742T = NBRC 114610T).


Assuntos
Comamonadaceae/classificação , Filogenia , Microbiologia do Solo , Composição de Bases , Comamonadaceae/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Especificidade da Espécie
14.
Arch Microbiol ; 203(1): 97-105, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32757114

RESUMO

In a conserved culture of the purple sulfur bacterium Thiospirillum jenense DSM216T, cells of this species were easily recognized by cell morphology, large-size spirilla and visible flagellar tuft. The Tsp. jenense genome is 3.22 Mb in size and has a GC content of 48.7 mol%. It was readily identified as a member of the Chromatiaceae by the complement of proteins in its genome. A whole genome comparison clearly placed Tsp. jenense near Thiorhodovibrio and Rhabdochromatium species and somewhat more distant from Thiohalocapsa and Halochromatium species. This relationship was also found with the sequences of the photosynthetic reaction center protein PufM. The genome sequence supported important properties of this bacterium: the presence of ribulose-bisphosphate carboxylase and enzymes of the Calvin cycle of autotrophic carbon dioxide fixation but the absence of carboxysomes, an incomplete tricarboxylic acid cycle and the lack of malate dehydrogenase, the presence of a sulfur oxidation pathway including adenylylsulfate reductase (aprAB) but absence of assimilatory sulfate reduction, the presence of hydrogenase (hoxHMFYUFE), nitrogenase and a photosynthetic gene cluster (pufBALMC). The FixNOP type of cytochrome oxidase was notably lacking, which may be the reason that renders the cells highly sensitive to oxygen. Two minor phototrophic contaminants were found using metagenomic binning: one was identified as a strain of Rhodopseudomonas palustris and the second one has an average nucleotide identity of 82% to the nearest neighbor Rhodoferax antarcticus. It should be considered as a new species of this genus and Rhodoferax jenense is proposed as the name.


Assuntos
Chromatiaceae/classificação , Chromatiaceae/genética , Genoma Bacteriano/genética , Filogenia , Composição de Bases , Comamonadaceae/classificação , Comamonadaceae/genética , Nitrogenase/genética , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Rodopseudomonas/classificação , Rodopseudomonas/genética
15.
Sci Rep ; 10(1): 19052, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149258

RESUMO

Flagellins are the protein components of bacterial flagella and assemble in up to 20,000 copies to form extracellular flagellar filaments. An unusual family of flagellins was recently discovered that contains a unique metalloprotease domain within its surface-exposed hypervariable region. To date, these proteolytic flagellins (also termed flagellinolysins) have only been characterized in the Gram-positive organism Clostridium haemolyticum, where flagellinolysin was shown to be proteolytically active and capable of cleaving extracellular protein substrates. The biological function of flagellinolysin and its activity in other organisms, however, remain unclear. Here, using molecular biochemistry and proteomics, we have performed an initial characterization of a novel flagellinolysin identified from Hylemonella gracilis, a Gram-negative organism originally isolated from pond water. We demonstrate that H. gracilis flagellinolysin (HgrFlaMP) is an active calcium-dependent zinc metallopeptidase and characterize its cleavage specificity profile using both trypsin and GluC-derived peptide libraries and protein substrates. Based on high-throughput degradomic assays, HgrFlaMP cleaved 784 unique peptides and displayed a cleavage site specificity similar to flagellinolysin from C. haemolyticum. Additionally, by using a set of six protein substrates, we identified 206 protein-embedded cleavage sites, further refining the substrate preference of HgrFlaMP, which is dominated by large hydrophobic amino acids in P1', and small hydrophobic or medium-sized polar residues on the amino-terminal side of the scissile bond. Intriguingly, recombinant HgrFlaMP was also capable of cleaving full-length flagellins from another species, suggesting its potential involvement in interbacterial interactions. Our study reports the first experimentally characterized proteolytic flagellin in a Gram-negative organism, and provides new insights into flagellum-mediated enzymatic activity.


Assuntos
Comamonadaceae/metabolismo , Flagelina/metabolismo , Água Doce/microbiologia , Microbiologia da Água , Aminoácidos , Comamonadaceae/classificação , Comamonadaceae/genética , Flagelina/genética , Genoma Bacteriano , Fases de Leitura Aberta , Filogenia , Proteólise , Proteoma , Proteômica/métodos , Especificidade por Substrato
16.
Nature ; 587(7832): 103-108, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32999461

RESUMO

Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.


Assuntos
Arabidopsis/microbiologia , Comamonadaceae/classificação , Comamonadaceae/fisiologia , Microbiota/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Comamonadaceae/genética , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Microbiota/genética , Óperon/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Rizosfera , Transdução de Sinais
17.
Syst Appl Microbiol ; 43(6): 126135, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32971439

RESUMO

Two plant-associated bacterial strains were isolated from Beijing, China. The two strains possessed almost identical 16S rRNA gene sequences. However, REP-PCR fingerprint patterns discriminated that they were not from one clonal origin. The average nucleotide identity (ANI) value and the digital DNA-DNA hybridization (dDDH) value between the two strains were 99.4% and 94.7%, respectively, suggesting that they belonged to the same species. The 16S rRNA gene phylogeny analysis indicated that the two strains belonged to the genus Variovorax and were closely related to V. paradoxus NBRC 15149T and V. boronicumulans BAM-48T. Their phylogenetic relationship were confirmed in both phylogenetic trees constructed with house-keeping gene sequences and concatenated core genes of the genome. The ANI and dDDH comparisons among 502T and the most related type strains showed values below the accepted threshold for species discrimination. The genome sizes of strains 502T and T529 were 6.76 and 6.69 Mbp, respectively. The strain 502T had 6,227 predicted genes with DNA G+C content of 67.4 %. The respiratory quinone was ubiquinone-8 and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphospatidylglycerol. The major fatty acids of strain 502T were C10: 03-OH (26.2%), C16:0 (12.9%), C17:0 cyclo (14.5%) and summed feature 3 (21.4%). Furthermore, both strains showed the potential of plant growth promotion. Based on these results, the two isolates could be considered to represent a novel species of the genus Variovorax, for which the name Variovorax beijingensis sp. nov., is proposed, with 502T (= DSM 106862T = CGMCC 1.16560T) as the type strain.


Assuntos
Comamonadaceae/classificação , Filogenia , Solanum lycopersicum/microbiologia , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Pequim , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
18.
Int J Syst Evol Microbiol ; 70(11): 5841-5847, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32965207

RESUMO

A Gram-stain-negative, aerobic, non-motile and rod- or coccoid-shaped novel bacterial strain, designated MAH-25T, was isolated from soil sampled in a pine garden. The colonies were observed to be light pink-coloured, smooth, spherical and 1-2 mm in diameter when grown on nutrient agar for 2 days. Strain MAH-25T was found to be able to grow at 15-35 °C, at pH 5.0-8.0 and at 0-2.0 % NaCl. Cell growth occurred on Reasoner's 2A agar and nutrient agar. The strain was found to be positive in both oxidase and catalase tests. According to 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Ramlibacter and closely related to Ramlibacter solisilvae 5-10T (98.0 % similarity), Ramlibacter henchirensis TMB834T (97.7 %), Ramlibacter tataouinensis TTB310T (97.6 %) and Ramlibacter rhizophilus YS3.2.7T (97.3 %). The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-25T and the four closely related type strains were in the range of 78.8-81.3 % and 22.3-24.1 %, respectively. The novel strain MAH-25T has a draft genome size of 5 505 957 bp (11 contigs), annotated with 5210 protein-coding genes, 46 tRNA and three rRNA genes. The genomic DNA G+C content was determined to be 70.3 mol%. The predominant isoprenoid quinone was ubiquinone 8 (Q-8). The major fatty acids were identified as C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. On the basis of DNA-DNA hybridization, genotypic analysis, chemotaxonomic and physiological data, strain MAH-25T represents a novel species within the genus Ramlibacter, for which the name Ramlibacter pinisoli sp. nov. is proposed, with MAH-25T (=KACC 19839T=CGMCC1.13660T) as the type strain.


Assuntos
Comamonadaceae/classificação , Jardins , Filogenia , Pinus , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
19.
Genes (Basel) ; 11(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752049

RESUMO

Polyhydroxyalkanoates (PHAs), the intracellular polymers produced by various microorganisms as carbon and energy storage, are of great technological potential as biodegradable versions of common plastics. PHA-producing microbes are therefore in great demand and a plethora of different environments, especially extreme habitats, have been probed for the presence of PHA-accumulators. However, the polar region has been neglected in this regard, probably due to the low accessibility of the sampling material and unusual cultivation regime. Here, we present the results of a screening procedure involving 200 bacterial strains isolated from 25 habitats of both polar regions. Agar-based tests, microscopy, and genetic methods were conducted to elucidate the biodiversity and potential of polar-region PHA-accumulators. Microscopic observation of Nile Red stained cells proved to be the most reliable screening method as it allowed to confirm the characteristic bright orange glow of the Nile Red-PHA complex as well as the typical morphology of the PHA inclusions. Psychrophilic PHA-producers belonged mostly to the Comamonadaceae family (Betaproteobacteria) although actinobacterial PHA synthesizers of the families, Microbacteriaceae and Micrococcaceae also featured prominently. Glacial and postglacial habitats as well as developed polar region soils, were evaluated as promising for PHA-producer bioprospection. This study highlights the importance of psychrophiles as biodiverse and potent polyhydroxyalkanoate sources for scientific and application-aimed research.


Assuntos
Microbiota , Poli-Hidroxialcanoatos/biossíntese , Polimorfismo Genético , Regiões Árticas , Comamonadaceae/classificação , Comamonadaceae/genética , Comamonadaceae/metabolismo , Micrococcaceae/classificação , Micrococcaceae/genética , Micrococcaceae/metabolismo , Filogenia , Poli-Hidroxialcanoatos/genética , Água do Mar/microbiologia , Microbiologia do Solo
20.
J Microbiol Biotechnol ; 30(10): 1500-1509, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32807757

RESUMO

Drought is a major abiotic factor and has drastically reduced crop yield globally, thus damaging the agricultural industry. Drought stress decreases crop productivity by negatively affecting crop morphological, physiological, and biochemical factors. The use of drought tolerant bacteria improves agricultural productivity by counteracting the negative effects of drought stress on crops. In this study, we isolated bacteria from the rhizosphere of broccoli field located in Daehaw-myeon, Republic of Korea. Sixty bacterial isolates were screened for their growth-promoting capacity, in vitro abscisic acid (ABA), and sugar production activities. Among these, bacterial isolates YNA59 was selected based on their plant growth-promoting bacteria traits, ABA, and sugar production activities. Isolate YNA59 highly tolerated oxidative stress, including hydrogen peroxide (H2O2) and produces superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities in the culture broth. YNA59 treatment on broccoli significantly enhanced plant growth attributes, chlorophyll content, and moisture content under drought stress conditions. Under drought stress, the endogenous levels of ABA, jasmonic acid (JA), and salicylic acid (SA) increased; however, inoculation of YNA59 markedly reduced ABA (877 ± 22 ng/g) and JA (169.36 ± 20.74 ng/g) content, while it enhanced SA levels (176.55 ± 9.58 ng/g). Antioxidant analysis showed that the bacterial isolate YNA59 inoculated into broccoli plants contained significantly higher levels of SOD, CAT, and APX, with a decrease in GPX levels. The bacterial isolate YNA59 was therefore identified as Variovorax sp. YNA59. Our current findings suggest that newly isolated drought tolerant rhizospheric Variovorax sp. YNA59 is a useful stress-evading rhizobacterium that improved droughtstress tolerance of broccoli and could be used as a bio-fertilizer under drought conditions.


Assuntos
Brassica/microbiologia , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Secas , Estresse Fisiológico , Ácido Abscísico/metabolismo , Antioxidantes/análise , Catalase/metabolismo , Clorofila/análise , Ciclopentanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Oxilipinas/metabolismo , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rizosfera , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...